
Logic Diffusion for Knowledge Graph Reasoning
Xiaoying Xie∗

xiaoyingx@stu.xjtu.edu.cn
Xi’an Jiaotong University

Biao Gong∗
Yiliang Lv

a.biao.gong@gmail.com
401851090@qq.com

Zhen Han
hanzhn@qq.com

Xi’an Jiaotong University

Guoshuai Zhao
guoshuai.zhao@xjtu.edu.cn
Xi’an Jiaotong University

Xueming Qian
qianxm@mail.xjtu.edu.cn
Xi’an Jiaotong University

ABSTRACT
Most recent works focus on answering first order logical queries
to explore the knowledge graph reasoning via multi-hop logic pre-
dictions. However, existing reasoning models are limited by the
circumscribed logical paradigms of training samples, which leads to
a weak generalization of unseen logic. To address these issues, we
propose a plug-in module called Logic Diffusion (LoD) to discover
unseen queries from surroundings and achieves dynamical equilib-
rium between different kinds of patterns. The basic idea of LoD is
relation diffusion and sampling sub-logic by randomwalking aswell
as a special training mechanism called gradient adaption. Besides,
LoD is accompanied by a novel loss function to further achieve the
robust logical diffusion when facing noisy data in training or testing
sets. Extensive experiments on four public datasets demonstrate the
superiority of mainstream knowledge graph reasoning models with
LoD over state-of-the-art. Moreover, our ablation study proves the
general effectiveness of LoD on the noise-rich knowledge graph.

KEYWORDS
knowledge graph reasoning, multi-hop logic reasoning, First-Order-
Logic

1 INTRODUCTION
Knowledge graph (KG) provides a structural data representation
which is organized as triples of entity pairs and relationships [3, 47,
54]. In recent year, KG-based common sense reasoning algorithms
usually combine mathematical logic [20, 63], relational path [25, 29,
46], distributional representation [43, 48, 62], etc. [1, 21, 30] with
deep learning models to answer First-Order-Logical (FOL) queries,
which greatly enhanced reasoning performance and achieved gen-
eralization. Different from the basic structural triplets like (𝑒𝑠 , 𝑟 , 𝑒𝑜),
FOL implements logic by existential quantification (∃), conjunc-
tion (∧), disjunction (∨), and negation (¬), which is well suited for
describing relationships. Around such logical units, the learning
objective of models usually focuses on logical mappings rather than
representations to achieve the best logical answers. However, one
of the limitations of this former is that the logical paradigms need to
be defined manually (e.g., [22, 59]). Also, as mentioned above, since
the weak ability of learning representations, the impact of unseen
FOL and noisy data with unreliable logic on reasoning performance
is catastrophic. Coincidentally, these two elements are abundant
and inevitable in the real-world knowledge graph [19, 27, 56].

∗Both authors contributed equally to this research.

Original Training Sample

Diffused Training Samples

Which film wins both the Academy Awards
for Best Original Score and the Golden
Globe Awards for Best Motion Picture?

Who directs the film with the Academy Award for Best Original Score and the
Golden Globe Award for Best Motion Picture?

Which awards do films directed by Damien Chazelle win?

Which actress, whose film wins the Golden Globe Awards, works for the
Summit Entertainment?

Golden Globe Awards

Academy Awards

Summit Entertainment

Diffused Reasoning Sub-graph

Damien Chazelle

Director

Issuer

Emma Stone

La La Land Heroine

Best
Motion
Picture

Best
Original
Score

Figure 1: Illustration of original training samples and ex-
tended training samples after the diffusion. How to discover
unseen paradigms from seen ones is what LoD tries to solve.

Based on the above thinking, we summarize two major prob-
lems in the real-world knowledge graph: (1) discovering unseen
FOL paradigms, and (2) learning non-duality logic. Specifically, the
unseen FOL refers to the FOL that does not appear in the training
data but needs to answer during testing. While reasoning models
have a limited ability to learn these queries, it is implicit in the
training process and leads to a severe impairment of performance.
Therefore, it is beneficial to be proactive in discovering unseen FOL
during training. Secondly, the non-duality logic means the unreli-
able inverse mapping between entities. The inverse self-consistency
of the logic is very rare in the noise-rich knowledge graph, and by
learning this inverse mapping which we called non-duality logic,
the model can achieve very strong robustness.

ar
X

iv
:2

30
6.

03
51

5v
1

 [
cs

.L
G

]
 6

 J
un

 2
02

3

Xiaoying Xie, Biao Gong, Yiliang Lv, Zhen Han, Guoshuai Zhao, and Xueming Qian

Recent studies (e.g., [32]) have divided the seen / unseen logical
paradigms to fairly evaluate models and [8, 37, 40, 51] has used
variational inference to handle potential noise in real-world knowl-
edge graphs, none of them analyzed the implications of making
these attempts on noisy knowledge graph in a holistic way. As a
result, there is no holistic solution that can be specifically used to
solve robust common sense reasoning problems on unseen logical
paradigms. In this paper, we consider a plug-in module called Logic
Diffusion (LoD) to address these issues.

LoD relies on a new structure called Hierarchical Conjunctive
Query which achieves a wide range of logic perception through
different levels of unseen FOL discovery. Then, with the help of
Logic Specific Prompt, LoD can distinguish between different logical
paradigms as well as learn the commonalities of the same kind of
FOL. However, due to the difference in the learning difficulty, the
model tends to learn dominant or simple FOL, which is detrimental
to the overall performance. Thus, we design a training mechanism
called Gradient Adaption in LoD to slightly suppress the gradient
on the fastest converging FOL and make the model have more
opportunities to learn difficult or long-tailed samples in the early
stage of training. Figure 1 is the illustration of the difference in FOL
with or without LoD.

Besides, LoD is accompanied by a novel loss function to further
achieve the robust logical diffusion when facing noisy data in train-
ing or testing sets. The key idea of our loss function is extending
the length of the mapping link and amplifying the perturbation, so
that the noise data can be blocked. Following [19, 51], we divide
the noisy data of non-duality logic into (1) training with noise, and
(2) testing with noise. The model with our loss function tends to
retain more FOL inputs that can be successfully reverse mapped in
the training phase, and actively eliminates FOL inputs that cannot
be successfully reverse mapped in the testing phase. Such a process
ensures that the model has the ability to learn reverse mapping
and remembers the useful data. We use a mixed dataset to simulate
what contains massive noise data of non-duality logic. In Section 5,
we did detailed noise ratio experiments based on two commonly
used public datasets FB15K [3] and NELL-995 [54].

In summary, the main contributions of our work are three-fold:

• We propose a plug-in module called Logic Diffusion (LoD)
which is extremely effective reasoning on both unseen and
seen logical paradigms. To the best of our knowledge, LoD
is the first work to focus on logic diversity augmentation
on logic perspective in knowledge graph reasoning by a
flexible module.

• LoD is accompanied by a novel loss function to further
achieve the robust logical diffusion when facing noisy data
in training or testing sets.

• Extensive experiments on four public datasets demonstrate
the superiority of mainstream KG reasoning models with
the proposed LoD plug-in module over state-of-the-art.
Moreover, our ablation study proves the general effective-
ness of LoD on the noise-rich knowledge graph.

2 RELATEDWORK
Logical query reasoning on knowledge graphs has been recently
received growing interest. Generally speaking, this work contains

two main lines of works: how to model multi-hop relations and
how to model numerous answers [11, 58].

2.1 Modeling Multi-hop Relations
Multi-hop logic reasoning try to answer queries with multi-hop
logic permutations. Since embedding entities and relations in knowl-
edge graph (KG) into low-dimensional vector space has been widely
studied. Various works [5, 6, 28, 33, 34, 41, 49, 57] can answer single-
hop relational queries via link prediction but these models cannot
handle complex logical reasoning. Therefore, to answer multi-hop
FOL queries[15], Graph Query Embedding (GQE) [17] encodes
conjunctive queries through a computation graph with relational
projection and conjunction (∧) as operators. While path-based (i.e.,
deep reinforcement learning based) methods [7, 25, 26, 29, 46, 52–
54] start from anchor entities and determine the answer set by
traversing the intermediate entities via relational path and graph
neural convolution based methods [18, 23, 36, 38, 55, 60] pass mes-
sage to iterate graph representation for reasoning.

2.2 Modeling Numerous Answers
Traditional knowledge graph reasoning works do not pay attention
to potentially large sets of answer entities [31]. That is, as long
as one correct answer is inferred, KGR models is considered valid.
However, it is unclear how such an entity set containing numerous
answers can be represented as a single point in the vector space,
causing inference inconsistent with the real situation. So in order to
handle numerous answer entities and inspired by metric learning,
a series of works embeds queries into geometric shapes [17, 31, 61],
probability distributions [12, 13, 21, 24, 50], and complex objects
[2, 14, 42]. Then by optimizing the similarity metrics between an-
swer entities and queries, entities within border distance metrics
of various representation spaces are regarded as correct answers.

However, above works lack of generalization to modeling queries
of unseen logical paradigms and suffer from the interference of
noisy datawith non-duality logic, which are unavoidable in complex
logical reasoning tasks on real-world knowledge graphs.

3 PRELIMINARIES
3.1 Logic Format
In the field of knowledge graph reasoning, most recent works focus
on answering First-Order-logical queries rather than single-hop tra-
versal within the triplet level. It is because answering FOL queries
requires proper representation in both embedding and logic per-
spectives. As it is illustrated in Figure 1, the query “Who directs
the film with the Academy Award for Best Original Score and the
Golden Globe Award for Best Motion Picture?” can be structured
as a reasoning sub-graph 𝐺𝑞 [15]. Entities “Golden Globe Award”
and “Academy Award’ are anchor entities, while entity “Damien
Chazelle” is the target entity which refers to the answer, consisting
a specific logical pattern of FOL.

More specifically, First-Order Logic (FOL) is logic paradigms
consisting of logical operators as conjunction (∨), disconjunction
(∧), universal quantification(∀), existential quantification (∃) and
negation (¬) 1. Structured query-answer pairs of different FOL
1Note that queries with universal quantification do not apply in real-world knowledge
graphs since no entity connects with all the other entities. Furthermore, if it is necessary

Logic Diffusion for Knowledge Graph Reasoning

paradigms are the input of knowledge graph reasoning models
during training while only queries during testing. Apparently it is
impossible to exhaust all logical patterns. Moreover, in order to eval-
uate the generalization ability to unseen paradigms, paradigms for
inference are more than training ones. While FOL paradigms with-
out negation operators are Existential-Positive-First-order (EPFO),
focused by some other works.

3.2 Knowledge Graph Embedding
Before logical reasoning, knowledge graph embedding (KGE) needs
to map entities and relations in KG onto a representational la-
tent space, which can participate in the former logical operations.
Given a set of entities E and a set of relations R, a knowledge
graph G = {(𝑒𝑠 , 𝑟 , 𝑒𝑜)} ⊂ E × R × E consists of factual triples
as subject 𝑒𝑠 ∈ E, object 𝑒𝑜 ∈ E and relational functions 𝑟 ∈ R :
E × E → {True, False} or other confidence and distributional
metrics. Suppose e𝑠 ∈ R𝑑 , e𝑜 ∈ R𝑑 , r ∈ R𝑑 are vector representa-
tions of subject 𝑒𝑠 , object 𝑒𝑜 and relation 𝑟 in a triple of knowledge
graphs, KGE works usually optimize their models according to a
relation projection function e𝑜 = 𝑓𝑟 (e𝑠). As a result, the embedding
features can be extracted from the embedding layer of pre-trained
KGE models to computing the former logical operations.

3.3 Knowledge Graph Reasoning
As mentioned above, answering a FOL query 𝑞 can be simply il-
lustrated as finding its answer set [[𝑞]] according to its reasoning
sub-graph 𝐺𝑞 . A reasoning sub-graph is an abbreviation of the
computation graph where nodes refer to entity sets and edges refer
to logical operations. We call the starting point of FOL as anchor
entities, and the end point of FOL as target entities.

Thuswe can answer𝑞 by executing logical operators from anchor
entities. Based on this premise, logical operators can be matched
according to the following rules:

• 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑃𝑟𝑜 𝑗𝑒𝑐𝑡𝑖𝑜𝑛 : given a set 𝑆 ⊆ E of entities and rela-
tion operator 𝑟 ∈ R, compute entities ∪𝑒∈𝑆𝑃𝑟 (𝑒) adjacent
to 𝑆 via 𝑟 : 𝑃𝑟 (𝑒) ≡ {𝑒′ ∈ : 𝑟 (𝑒, 𝑒′) = True}.

• 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 : Given 𝑛 sets {𝑆1, 𝑆2, . . . , 𝑆𝑛} of entities, com-
pute their intersection ∩𝑛

𝑖=1𝑆𝑖 .
• 𝑈𝑛𝑖𝑜𝑛 : Given 𝑛 sets {𝑆1, 𝑆2, . . . , 𝑆𝑛} of entities, compute

their union ∪𝑛
𝑖=1𝑆𝑖 .

• 𝑁𝑒𝑔𝑎𝑡𝑖𝑜𝑛 : Given a set 𝑆 ⊆ of entities , compute its com-
plement 𝑆 ≡ E \ 𝑆 .

In a word, knowledge graph reasoning mainly aims at answering
FOL queries by executing several logical operators with vector
representations after embedding.

4 LOGIC DIFFUSION
In this section, we introduce the proposed plug-in module——Logic
Diffusion in detail. LoD accepts any permutation and combination
of FOL instances of clean or noise-rich KG as input. Referring to
Figure 2 and Figure 3, along the direction of data flow, LoD has
two main designs including LoD architecture and adaptive loss.
LoD architecture, consisting of [Hierarchical Conjunctive Query],

to introduce the universal quantifier into KG reasoning, the universal quantifier can
be transformed from the existential quantification and the negation. Thus we will not
discuss the queries with the universal quantifier.

+

Prompt

+
Prompt

+

Prompt

…

Lo
gi

ca
l M

ap
pi

ng
 F

un
ct

io
n

G
ra

di
en

t A
da

pt
io

n

Atomic FOL
Unseen FOL

Hierarchical
Conjunctive Query

Random WalkingAdjacency

𝑇!

𝑇"

𝑇#

[𝑇!; 𝑞!,%]

[𝑇"; 𝑞",&]

[𝑇#; 𝑞#,']

𝑞!,%

𝑞",&

𝑞#,'

𝑞!,%(

𝑞",&(

𝑞#,'(

𝜔!

𝜔!

𝜔!

e"

e# e$

e%

r#

r"

r$

𝑁(𝑒%)

e&

e'

e(r%

r&

E",&
R",&

E#,'
R#,'

E!,%
R!,%

𝑙)!
*+"

1
𝑛
𝑙)!
*

𝑙)"
*+"

𝑙)#
*+"

1
𝑛
𝑙)#
*

𝑧
𝑛
𝑙)"
*

Figure 2: Overall framework Logic Diffusion architecture.
Along the direction of data flow, there are Hierarchical Con-
junctive Query, Logic Specific Prompt andGradient Adaption,
discovering and learning multiple FOL paradigms.

1p

Further
Training
Queries

Unseen
Queries

Atomic
Training
Queries

2p 3i3p

2ni 3ni pininp pni

2u piipup

u

u

u

u

nn n

n

n

2i

Figure 3: Illustration of 14 typical FOL paradigms, including
atomic training, further training and unseen queries.

[Logic Specific Prompt] and [Gradient Adaption] is used to discover
and learn multiple FOL paradigms. Note that the logic diffusion
process mainly happens during [Hierarchical Conjunctive Query],
which extends logical diversity by random walking among the
entity distribution; [Logic Specific Prompt] specializes the feature
within each FOL paradigms while distinguishes among different
ones; [Gradient Adaption] dynamically adjusts convergence speed
and achieves adaptively balance of several logic patterns. While
LoD Loss is used to keep duality logic during robust reasoning and
release the interference of noisy data in real-world KG.

4.1 LoD Architecture
Hierarchical Conjunctive Query. In this section, we introduce
Hierarchical Conjunctive Query, which is the core component of
logical diffusion, discovering unseen logic paradigms and sample
sub-logic patterns both in abstract reasoning sub-graphs and fig-
urative instances. To implement Logic Diffusion, we firstly define
Hierarchical Conjunctive Query as a theoretical guide. Following

Xiaoying Xie, Biao Gong, Yiliang Lv, Zhen Han, Guoshuai Zhao, and Xueming Qian

A1

1p-ex 2p-ex 3p-ex

3i-ex

T1
T0
A0

A2

T1
T0
A0
A1

A3

2i-ex

1

2

3

4 5

6

7 8

65

1

2 3 4 7

8 9 10 11

Figure 4: Illustration of the Hierarchical Conjunctive Query.
Each group represents a FOL paradigm. Nodes T0 layer con-
tains the positive target entity 𝑡 which indicates the answer
of a certain FOL. 𝑒𝑖 is one layer below 𝑒 𝑗 if there exists (𝑒𝑖 , 𝑒 𝑗)
satisfying 𝑟 (𝑒𝑖 , 𝑒 𝑗) = True where 𝑟 is the relation mapping.

[32], we selected 14 typical FOL paradigms illustrated in Figure 3
where atomic training queries and further training queries denote
the input samples of KGR models, while unseen queries denote
samples do not participate training process but evaluation. Though
there are far more FOL paradigms, we can still learn the gener-
alization ability of KGR models through modeling these unseen
queries in this specific setting. As the name suggests, Hierarchical
Conjunctive Query has a hierarchical form, from the bottom to top
which is:

• 𝐵𝑜𝑡𝑡𝑜𝑚 𝐿𝑎𝑦𝑒𝑟 : Atomic Query
Following [32], there are 14 typical FOL paradigms including

atomic training {1𝑝, 2𝑝, 3𝑝, 2𝑖, 3𝑖}, further training {2𝑛𝑖, 3𝑛𝑖, 𝑖𝑛𝑝,
𝑝𝑛𝑖, 𝑝𝑖𝑛} and unseen {𝑖𝑝, 𝑝𝑖, 2𝑢,𝑢𝑝}. Since the atomic training queries
{1𝑝, 2𝑝, 3𝑝, 2𝑖, 3𝑖} are raw and simple input samples, we simply take
the them as the bottom layer of Hierarchical Conjunctive Query.

• 𝑀𝑖𝑑𝑑𝑙𝑒 𝐿𝑎𝑦𝑒𝑟 : Sub-Graph Diffusion
The middle layer of Hierarchical Conjunctive Query contains

the extensions and permutations of Atomic Queries, which is the-
oretically infinite (e.g., {9𝑝, 10𝑖, 7𝑖3𝑝 . . . }). As shown in Figure 4,
given a query 𝑞, reasoning sub-graph 𝐺𝑞 and positive target 𝑡 of
an atomic query, we diffuse 𝐺𝑞 by neighbors. Suppose 𝑁 (𝑒) ≡
{𝑒𝑛𝑒𝑖𝑏 |𝑟 (𝑒𝑛𝑒𝑖𝑏 , 𝑒) ∨ 𝑟 (𝑒, 𝑒𝑛𝑒𝑖𝑏), 𝑟 ∈ R} is the collection of neighbors
of each central node 𝑒 , we get 𝑁 (𝑒1), 𝑁 (𝑒2), . . . , 𝑁 (𝑒𝑛) and 𝑁 (𝑡).
If 𝑟 (𝑒𝑛𝑒𝑖𝑏 𝑗 , 𝑒𝑖) = True or 𝑡𝑛𝑒𝑖𝑏 𝑗 ∈ 𝑁 (𝑡), we associate 𝑒𝑛𝑒𝑖𝑏 𝑗 and
𝑡𝑛𝑒𝑖𝑏

𝑗 to 𝐺𝑞 via 𝑟 . We stipulate that 𝑒𝑛𝑒𝑖𝑏 𝑗 is different from any
other entities in 𝑞 and 𝑡 .

• 𝑇𝑜𝑝 𝐿𝑎𝑦𝑒𝑟 : Unseen Query
The top layer contains unseen FOL which are not present in

the training set. It is generated by random walking in the diffused
reasoning sub-graphs to cover complex logic in the real-world
knowledge graph, i.e., they are not given directly with the training
set. Here we give examples of 3i − ex and 2p − ex. From 3i − ex, we

can retrieve a sub-structure (nodes 1, 2, 3, 5 and relational edges
attached, etc.) corresponding to ic. From 2p − ex , we can retrieve a
sub-structure (nodes 1, 2, 3, 6 and relational edges attached, etc.)
corresponding to ci. Note that each node in the diagram actually
represents a collection of entities, which is only represented as a
single entity to simplified.

In the paradigm 3i − ex, for ic query with nodes 1, 2, 3, 5, we
label nodes 2, 3 as the new anchor entities, and node 5 as the new
positive target entity. Thenwe randomly sample𝑛_𝑠 entities ∉ 𝑁 (1)
as the negative target entities where 𝑁 (1) denotes the collection of
neighbors of node 1.

In paradigm 2p− ex, for ci query with nodes 1, 2, 3, 6, note since
node 2 is unknown to models, we will not choose this kind of nodes
as the new target nor anchor entities. Similarly we label nodes 2,
6 as the new anchor entities, node 5 as the new positive target
entities, and ones ∉ 𝑁 (6) as the negative target entities.
Logic Specific Prompt. Stemming from recent advances in natural
language processing, prompt learning initially fills the input sample
into properly handcrafted prompt templates, so that a pre-trained
language model can “understand” the task [4]. Similarly, we de-
fine different kinds of FOL as different tasks and propose Logic
Specific Prompt to make the learning of the model more targeted.
Specifically, given a set {𝑄1, 𝑄2, . . . , 𝑄𝑘 } belonging to 𝑘 kinds of
FOL, we generate 𝑘 random vectors {𝑇1,𝑇2, . . . ,𝑇𝑘 } from normal
distribution as initialized prompt. Then we concatenate prompt 𝑇𝑖
with corresponding q𝑖, 𝑗 as q′𝑖, 𝑗 . The formula of q′

𝑖, 𝑗
is as follow:

q′𝑖, 𝑗 = ReLU(𝜔T
[
Ti; q𝑖, 𝑗

]
+ bT) (1)

where 𝑇𝑖 ∈ R𝑑T in which 𝑑𝑇 denotes the dimension of prompt,
filter 𝜔T ∈ R(𝑑+𝑑T)×𝑑 , bT ∈ R𝑑 is the bias. The optimal value of
𝑑𝑇 is 32.
Gradient Adaption. Our approach involves a rich variety of FOL
due to the introduction of Hierarchical Conjunctive Query. If no
restrictions are imposed, the model will tend to learn dominant
or simple FOL, which is detrimental to the overall performance.
The key idea of Gradient Adaption is to slightly suppress the gra-
dient on the fastest converging FOL. Through this processing, the
model has more opportunities to learn difficult or long-tailed sam-
ples in the early stage of training. Specifically, suppose 𝑙𝑖−1𝑝 =

{𝑙𝑖−1𝑝1 , 𝑙𝑖−1𝑝2 , . . . , 𝑙𝑖−1𝑝𝑛
} is the calculated loss value of {𝑝1, 𝑝2, . . . , 𝑝𝑛}

at the (𝑖-1)-th iteration, 𝑙𝑖𝑝 = {𝑙𝑖𝑝1 , 𝑙
𝑖
𝑝2 , . . . , 𝑙

𝑖
𝑝𝑛

} at the 𝑖-th iteration.
The suppression of 𝑙𝑖𝑝 is computed as follow:

𝑙𝑖𝑝
′
=

1
𝑛
(
𝑛∑︁
𝑗=1

𝑙𝑖𝑝 𝑗
− 𝑧 · 𝑙𝑖𝑝𝜁) (2)

The attenuation factor 𝑧 is 0.05. 𝜁 = argmax
𝑛∈R

𝑙𝑖−1𝑝𝑛
.

4.2 LoD Loss
In retrospect, we disassemble the noise-rich knowledge graph into
two major problems: unseen logic paradigms and noisy data with
non-duality logic. In this section, we will introduce our solution
for non-duality logic. As introduced in Section 3, a complex query
constructed with permutation of logic operators can be simply illus-
trated as a reasoning sub-graph 𝐺𝑞 . Answer queries by executing
logic operators from anchor entities to target entities is defined as

Logic Diffusion for Knowledge Graph Reasoning

Projection

Inverse
Projection

Projection

Inverse
Projection

Success Error

Duality Logic Non-duality Logic

Figure 5: Logic Diffusion Loss can perfect duality logic (i.e.,
bidirectionalmapping) between queries and answers in noise-
rich KG. Thus non-duality noisy data can be distinguished
by a distance threshold.

a forward reasoning procedure. However, the existing methods use
only forward procedure which leads to unreliable bidirectional map-
ping between queries and answers, which is non-duality. Indeed,
how to design a backward reasoning procedure and perfect the
inference-inversion process are the keys to solve this problem. That
is, to keep duality logic in knowledge graph reasoning. Specifically,
given an anchor entity set {𝑎1, 𝑎2, . . . , 𝑎𝑠 } of an FOL query 𝑞, we
define positive / negative forward relational paths 𝜚 / 𝜚 ′

𝑖
in the rea-

soning sub-graph 𝐺𝑞 . 𝜚 starts from a certain anchor entity 𝑎 𝑗 to a
positive target entity 𝑡 ∈ [[𝑞]] through relation mappings. 𝜚 ′

𝑖
starts

from 𝑎 𝑗 to a random negative entity 𝑡 ′
𝑖
∉ [[𝑞]]. Apparently, the only

kind of logic operators along a positive / negative forward relational
path is the relation projection 𝑃𝑟 (𝑒) ≡ {𝑒′ ∈ : 𝑟 (𝑒, 𝑒′) = True}.
After defining forward relational paths, we generate backward
relational paths with a similar strategy. We replace all relation pro-
jection operators in a forward relational path with their inverse
mapping 𝑃−1𝑟 (𝑒) ≡ {𝑒′ ∈ : 𝑟 (𝑒′, 𝑒) = True}. 𝜚−1

𝑗
denotes a positive

backward relational path from 𝑡 to 𝑎 𝑗 . 𝜚−1
′
𝑖, 𝑗 denotes a negative

backward relational path from 𝑡 ′
𝑖
to 𝑎 𝑗 . L 𝑗

𝑑𝑙
of the anchor entity 𝑎 𝑗

is:
L 𝑗

𝑑𝑙
= − log𝜎 (score(a𝑗 , 𝜚−1 𝑗))

−
𝑛_𝑠∑︁
𝑖=1

log𝜎 (−score(a𝑗 , 𝜚−1
′
𝑖, 𝑗))

(3)

Accordingly, we define LoD Loss as follows:

L𝑑𝑙 =



Max(L1
𝑑𝑙
,L2

𝑑𝑙
,L3

𝑑𝑙
), if 𝑝 ∈ {3i}

Max(L1
𝑑𝑙
,L2

𝑑𝑙
), if 𝑝 ∈ {2i, ip, pi}

Min(L1
𝑑𝑙
,L2

𝑑𝑙
), if 𝑝 ∈ {2u, up}

L1
𝑑𝑙
, if 𝑝 ∈ {1p, 2p, 3p}

(4)

The noisy data with non-duality logic can be distinguished by
score(𝜚−1, a) with the distance threshold 𝜍 .

In addition to L𝑑𝑙 , we also need to use a contrast loss L𝑟 to
optimize the model by pulling (q, t) closer while pushing (q, t′i)
farther (𝑞 is query, 𝑡 ∈ [[𝑞]] is target and t′

𝑖
∉ [[𝑞]] is random

negative target). The formula is as follow:

L𝑟 = − log𝜎 (score(t, q))

−
𝑛_𝑠∑︁
𝑖=1

log𝜎 (−score(t′𝑖 , q))
(5)

Table 1: Statistics of datasets as well as training, validation
and test edge splits. Entitymeans the number of entities.Rela.
means the number of relations. Tr-Edge means the number
of edges in training set. V-Edge means the number of edges in
validation set. Ts-Edge means the number of edges in testing
set. Ts-Edge means the number all edges.

Dataset Entity Rela. Tr-Edge V-Edge Ts-Edge Edge

FB15k 14,951 1,345 483,142 50,000 59,071 592,213
FB15k-237 14,505 237 272,115 17,526 20,438 310,079
NELL995 63,361 200 114,213 14,324 14,267 142,804
WN18 40,493 18 141,442 5,000 5,000 151,442

where score denotes a normalized score function to evaluate the
similarity between an entity and a query. 𝜎 is the sigmoid function,
and 𝑛_𝑠 denotes the negative sample size. Therefore, the overall
loss function L can be calculated as follow:

L = L𝑟 + 𝜆L𝑑𝑙 (6)

where 𝜆 ∈ [0, 1] is a hyperparameter. The best is 0.8.

Table 2: The best hyperparameters of LoD.

𝑑 lr 𝑏𝑧 𝑛_𝑠 𝑀 𝑑𝑇 𝑧

768 0.0005 512 128 64 32 0.05

5 EXPERIMENTS
5.1 Evaluation Setup
Datasets.We evaluate our approach over 4 standard KG datasets in-
cluding FB15k [3], FB15k-237 [47], NELL995 [54] andWN18 [3]
with their with official training / validation / test edge splits shown
in Table 1 containing 14 types of queries, which are created by the
query construction method in [32]. Following [32], we train mod-
els which can not handle negation with queries of 1p, 2p, 3p, 2i, 3i
patterns and evaluate those with all EPFO. While FOL models over
atomic queries plus 2ni, 3ni, inp, pni, pin, and evaluate those over
all FOL patterns. Note that BetaE [32] generates queries with an-
swers less than a threshold, while GQE [17] and Query2Box [31]
do not limit answers. We evaluate these methods following BetaE
for fair comparison. Besides, as for constructing queries of noisy
knowledge graphs, we randomly mix training / validation / test of
FB15k and NELL995 up with different proportions respectively.
Evaluation Metrics. Following [32], for each non-trivial answer 𝑡
of test query 𝑞, we rank it against non-answer entities E\[[𝑞]]test
[3]. Then the rank of each answer is labeled as 𝑟 . We use Mean
Reciprocal Rank(MRR): 1𝑟 and Hits at N (H@N) : 1[𝑟 ≤ 𝑁] as
quantitative metrics.
Baselines.We consider five metric learning based KG reasoning
models over incomplete KG: GQE [17], Query2Box [31], ABIN
[45], BetaE [32] and FuzzQE [10]. Note that GQE, Query2Box and
ABIN cannot handle the negation operation, so we only evaluate
these three methods by EPFO which does not contain the negation
operation compared to FOL. All comparison methods are repro-
duced by the released source code except FuzzQE. As reported in
the GitHub project, it usually takes four days to a week to finish a

Xiaoying Xie, Biao Gong, Yiliang Lv, Zhen Han, Guoshuai Zhao, and Xueming Qian

Table 3: MRR results (%) on answering FOL queries of raw methods and their enhanced versions (with LoD) over FB15k. avg
denotes the the average MRR on all queries (i.e., FOL), avg𝑝 on EPFO, and avg𝑢𝑛𝑠𝑒𝑒𝑛 on unseen paradigms. Note that limited by
training time, we manually reproduce the Logical Mapping Function of FuzzQE as it was described in the paper and marked as
FuzzQE*.

Model LoD avg avg𝑝 avg𝑢𝑛𝑠𝑒𝑒𝑛 1p 2p 3p 2i 3i pi ip 2u up 2in 3in inp pin pni

FB15k
% - 28.0 20.0 55.3 15.2 11.2 39.1 51.0 27.7 18.8 22.1 11.5 - - - - -

GQE ! - 30.6 22.8 57.9 16.6 13.7 42.3 54.1 31.6 21.3 24.8 13.4 - - - - -
% - 37.9 29.2 67.2 21.7 14.3 54.9 66.3 39.7 25.9 34.9 16.5 - - - - -

Query2Box ! - 40.4 31.7 70.9 24.0 16.3 57.1 68.5 42.3 28.4 37.5 18.4 - - - - -
% - 48.1 40.1 73.1 28.2 26.3 65.4 79.6 48.3 40.1 43.9 28.1 - - - - -

ABIN ! - 49.3 41.2 74.8 29.1 26.9 66.5 81.2 48.7 42.5 45.0 28.7 - - - - -
% 31.1 41.7 34.3 65.7 26.0 24.9 55.4 66.3 44.3 27.8 39.8 25.2 14.1 14.6 11.5 6.6 12.6

BetaE ! 32.6 43.7 37.0 67.4 27.0 25.7 56.9 68.0 47.6 30.3 41.7 28.4 15.4 15.1 12.2 7.1 13.7
% 31.5 41.9 33.0 67.9 27.2 25.9 56.2 67.7 46.7 30.2 34.6 20.6 15.2 15.7 12.4 7.3 13.5

FuzzQE* ! 33.1 43.8 35.8 69.2 28.2 26.3 57.9 69.4 48.0 31.5 38.5 25.2 16.4 17.1 13.5 8.0 14.3
FB15k-237

% - 16.4 10.3 35.6 7.4 5.4 23.3 34.5 16.6 10.5 8.3 5.8 - - - - -
GQE ! - 12.3 18.4 38.1 9.0 6.8 25.4 36.9 19.3 12.7 10.1 7.1 - - - - -

% - 20.6 14.0 41.0 9.7 7.0 29.4 42.4 21.3 12.6 12.4 9.6 - - - - -
Query2Box ! - 22.9 16.3 44.2 11.4 8.7 32.2 44.5 24.1 15.3 14.8 11.0 - - - - -

% - 30.2 21.7 54.9 17.2 14.1 42.4 56.2 31.4 18.2 19.9 17.1 - - - - -
ABIN ! - 32.1 23.2 58.5 18.3 15.0 44.6 59.8 33.6 19.9 21.2 18.0 - - - - -

% 15.5 21 14.3 39.3 11.0 10.0 28.8 42.6 22.4 12.7 12.5 9.7 5.1 8.0 7.4 3.5 3.4
BetaE ! 17.1 23.1 16.2 42.5 12.3 11.1 31.0 45.7 25.7 13.4 14.6 11.2 6.7 8.7 8.7 4.2 4.1

% 17.1 22.8 16.6 40.7 11.8 9.8 31.4 45.5 25.0 17.4 13.9 9.9 7.3 10.2 6.8 4.9 5.2
FuzzQE* ! 18.4 24.2 17.3 43.2 13.1 10.9 33.4 47.6 25.9 18.1 14.6 10.7 8.9 11.7 7.5 5.7 6.4

NELL995
% - 18.6 12.5 33.0 12.1 9.6 27.5 35.2 18.4 14.4 8.5 8.7 - - - - -

GQE ! - 21.4 14.6 39.4 13.2 10.8 31.7 38.9 20.8 17.5 10.3 9.6 - - - - -
% - 22.9 15.2 42.3 14.0 11.0 33.3 44.6 22.5 16.8 11.3 10.3 - - - - -

Query2Box ! - 25.5 16.5 49.7 15.3 12.2 37.7 48.7 24.2 18.5 11.9 11.4 - - - - -
% - 32.6 22.5 62.7 18.2 14.9 48.5 58.6 33.4 23.1 18.7 14.9 - - - - -

ABIN ! - 34.0 23.8 66.1 19.0 15.2 50.2 60.5 34.7 24.4 19.8 16.2 - - - - -
% 18.3 24.6 14.8 52.8 13.1 11.4 37.5 47.6 24.2 14.3 12.2 8.6 5.1 7.8 11.6 4.6 5.4

BetaE ! 20.2 27.4 17.3 58.9 16.0 13.5 40.2 49.6 27.9 17.0 14.8 9.3 5.7 8.1 11.9 5.0 5.5
% 20.0 27.3 18.3 55.9 16.8 14.9 36.4 48.0 26.1 19.7 15.6 11.9 7.1 8.9 10.9 3.5 4.3

FuzzQE* ! 21.4 29.0 19.9 59.4 17.2 15.4 39.2 50.2 27.7 21.4 16.8 13.6 8.7 9.5 11.2 4.0 5.1
WN18

% - 28.4 19.6 56.5 15.8 11.3 39.0 54.7 26.9 19.4 21.3 10.6 - - - - -
GQE ! - 30.9 21.1 59.4 18.2 13.0 44.2 59.0 28.4 21.2 23.0 11.9 - - - - -

% - 40.1 30.8 70.2 26.2 15.3 56.6 68.9 42.4 28.9 35.4 16.7 - - - - -
Query2Box ! - 43.2 33.8 75.6 28.6 16.9 58.8 73.2 45.8 32.2 38.1 19.2 - - - - -

% - 49.8 42.6 77.1 29.6 26.7 65.2 78.9 52.4 39.7 48.6 29.7 - - - - -
ABIN ! - 51.1 44.0 78.4 30.2 27.5 66.9 80.2 54.4 40.6 50.2 30.8 - - - - -

% 32.9 42.5 32.6 70.7 27.8 25.5 57.5 70.5 43.6 30.4 37.7 18.5 18.8 17.4 15.2 10.2 16.3
BetaE ! 34.4 44.6 35.1 74.8 28.4 26.2 59.2 72.8 46.3 32.8 40.0 21.1 19.1 17.5 15.5 10.8 16.5

% 33.1 43.9 34.6 73.9 28.4 26.0 58.2 70.1 45.5 31.8 40.3 20.7 15.9 16.0 14.9 8.7 13.4
FuzzQE* ! 34.6 45.6 36.2 76.5 29.1 26.4 60.5 73.7 47.6 33.2 41.2 22.6 16.8 16.4 15.5 9.8 15.4

run, which is much more time consuming than other comparison
methods. Limited by our experimental conditions and in order to be
comparable, we manually reproduce the Logical Mapping Function
of FuzzQE as it was described in the paper and marked as FuzzQE*
in Table 3 and Table 4.

Implementation Details. At the very beginning, all nodes and
relationships in the knowledge graph need to be embedded onto
feature space in order to participate in model training. So in order
to obtain better representations of nodes and relations, we pre-
train the embedding model (i.e., AcrE) and then reload parameters
of embedding layer into our end-to-end process as initialization

Logic Diffusion for Knowledge Graph Reasoning

Table 4: Overall MRR results (%) over four datasets.

FB15k FB15k-237 NELL995 WN18Model avg avg𝑝 avg avg𝑝 avg avg𝑝 avg avg𝑝
GQE - 28.0 - 16.4 - 18.6 - 28.4
Query2Box - 37.9 - 20.6 - 22.9 - 40.1
ABIN - 48.1 - 30.2 - 32.6 - 49.8
LoD-ABIN - 49.3 - 32.1 - 34.0 - 51.1

BetaE 31.1 41.7 15.5 21.0 18.3 24.6 32.9 42.5
FuzzQE* 31.5 41.9 17.1 22.8 20.0 27.3 33.1 43.9
LoD-FuzzQE* 33.1 43.8 18.3 24.2 21.4 29.0 34.6 45.6

parameters. Specifically, AcrE uses 𝜏 to denote a concatenating
operation and 2-dimensional (2D) reshaping function.

C0 = 𝜔0
𝑐 ★ 𝜏 ([e; r]) + b0𝑐 (7)

C𝑙 = 𝜔𝑙
𝑐 ★C𝑙−1 + b𝑙𝑐 (8)

𝑜 = 𝐹𝑙𝑎𝑡𝑡𝑒𝑛(ReLU(C𝐿 + 𝜏 ([e; r]))) (9)
where★ denotes a 2D convolution operation, 𝜔0

𝑐 is a standard filter
while 𝜔𝑙

𝑐 is a dilated filter, b0𝑐 and b𝑙𝑐 are bias vectors. C𝑙 denotes
the output after 𝑙 convolutions while C𝐿 is the output of the last
dilated convolution.We train themodel by optimizing a listwise loss
function for 20 epochs and take 512 as the embedding dimension 𝑑
of nodes.

Besides, inspired by the theory of Distributional Hypothesis
[35], [9, 16, 44, 60] proposes that aggregating local information
to augment entity representation is helpful for KGR tasks. There-
fore we search the neighbor entity set of each entity contained in
reasoning sub-graphs for once, and align the maximum of neigh-
bors as 64. Following [39], we concatenate the embedding of the
center entity and neighbors and then do feature fusion by a 2D stan-
dard convolution. Suppose an entity e ∈ R𝑑 and its aligned neigh-
bor set 𝑁 ′

e , the new representation e′ = MLP(𝐹𝑙𝑎𝑡𝑡𝑒𝑛(ReLU(𝜔𝑛 ★

(𝜏 ′ (e, 𝑁e′)) + b𝑛)), where ★ denotes a 2D convolution operation,
𝜔𝑛 is the filter, b𝑛 is the bias and the specification of MLP is
R
𝑚1×𝑚2 × R𝑑 . We define the concatenate function 𝜏 ′ (e, 𝑁e) ∈
R
𝑚1×𝑚2 as [e; e𝑛𝑒𝑖𝑏1

′
; e𝑛𝑒𝑖𝑏2

′
; . . . ; e𝑛𝑒𝑖𝑏𝑚] where e𝑛𝑒𝑖𝑏𝑖 ∈ 𝑁 ′

e .
Hyparameters.We adjust the following hyperparameters to obtain
the best model performance. Noted that we use the same hyperpa-
rameters before and after applying LoD for each base model.

• Dimensions to the embeddings 𝑑 from {256, 378, 512, 768,
1024}

• Learning rate lr from {1e−4, 5e−3, 1e−3}
• Batch size 𝑏𝑧 from {128, 256, 512}
• Negative sample size 𝑛_𝑠 from {32, 64, 128}
• Maximum of neighbors𝑀 from {0, 16, 32, 64, 128}
• Length of Logic-specific prompt 𝑑𝑇 from {8, 16, 32, 64}
• Attenuation Factor 𝑧 is from {0.10, 0.05, 0.01}

The best set of LoD hyperparameters is shown in Table 2.

5.2 Performance
Overall. As shown in Table 3, we apply LoD on several mainstream
models on FB15k. Table 4 shows the comparative experiments of
best implementation of LoD on four datasets. Note that to imple-
ment LoD using the same backbone, we evaluate EPFO (i.e., only

concept city home

concept date
n1997

concept dateliteral
n1953

concept
sportsgame

series
concept

dateliteral
n2003

concept
stateor-
province

states
concept

date
n1997

concept
personafrica

drive

concept
athletepakland

athletics

concept
visualizablething

episodes

concept
stateorprovince

un

concept date
n1997

concept
dateliteral n2003

concept
stateorprovince

states

Diffused Reasoning Sub-graph Atomic Instance

Expanded Instanceconcept:atdate

concept:
atdate_reverse

Concept:
statelocatedingeopoliticallocation

concept:
agentparticipatedin-

event_reverse
concept city home

concept
sportsgame

series

concept
dateliteral n2003

concept
stateor-
province

states

concept:
statelocatedin-

geopoliticallocation
concept:

atdate_reverse

concept city home

Figure 6: Illustration of a Logic Diffusion instance of 3i − ex
paradigms in NELL995.

avg𝑝) and FOL (i.e., avg and avg𝑝) in the top and bottom halves of
Table 4 respectively. For EPFO, we implement LoD based on ABIN
(noted as LoD-ABIN), while for FOL, by FuzzQE* (noted as LoD-
FuzzQE*). It shows that LoD-ABIN achieves gains of 1.2%, 1.9%,
1.4% and 1.3% in avg𝑝 MRR, LoD-FuzzQE* achieves 1.6%, 1.2%, 1.4%
and 1.5% in avg MRR on FB15k, FB15k-237, NELL995 and WN18
respectively. Apparently, LoD benefits from both representation
enhancement and logic augmentation by aggregating neighboring
information.
Ablation on LoD Architecture. In this section, we perform abla-
tion experiments of each part in LoD Architecture. To highlight the
impact and to be fair, we remove the KGE pre-training and neigh-
boring feature fusion in these experiments. As shown in Tabel 5,
Hier_conj means Hierarchical Conjunctive Query, L_prompt means
Logic-specific Prompt with 𝑑𝑇 = 32 and Grad_adapt means Gra-
dient Adaption with 𝑧 = 0.05. The results show that Hier_conj,
L_prompt and Grad_adapt achieves gains of 0.7%, 0.1% and 0.2%
in avg𝑝 MRR respectively. Hier_conj achieves gains of 1.6% in
avg𝑢𝑛𝑠𝑒𝑒𝑛 MRR. Activating all of sub-modules can achieve the fi-
nal gain of 1.1% in avg𝑝 MRR and 1.8% in avg𝑢𝑛𝑠𝑒𝑒𝑛 MRR. Such
results fully demonstrate the effectiveness of LoD. In particular, the
performance of Hier_conj in avg𝑢𝑛𝑠𝑒𝑒𝑛 MRR proves that neighbor
diffusion from logic perspective has a great significant improvement
on unseen FOL.
Visualization of Logic Diffusion. In order to show the results
of logic diffusion more intuitively, here we give an example on the
NELL995 dataset. As it is illustrated in Figure 6, the atomic training
data as input belongs to 3i paradigm. By Hierarchical Conjunctive
Query, the reasoning sub-graph is diffused as the left. Then a new
training instance which belongs to unseen ip paradigm is sampled
and participate in following training process by random walking.
Combining with results in Table 4, additional training data pre-built
by the same way contributes to generalization to unseen paradigms
indeed.

5.3 Ablation Study with Noisy Data
Overall. As shown in Tabel 6, we evaluate our LoD Loss on noisy
knowledge graph which consists of 80% FB15k as data of rigorous
logic and 20% NELL995 as that of non-rigorous logic. Note that
GQE uses a max-margin loss rather than a contrast loss where a
cosine similarity is used as the similarity metric. In retrospect, we

Xiaoying Xie, Biao Gong, Yiliang Lv, Zhen Han, Guoshuai Zhao, and Xueming Qian

Table 5: Ablation MRR results (%) on FB15k. Model implementation based on Query2box. avg𝑝 denotes the average MRR on
EPFO. avg𝑢𝑛𝑠𝑒𝑒𝑛 denotes the the average MRR on {pi, ip, 2u, up}.

Hier_conj L_prompt Grad_adapt avg𝑝 avg𝑢𝑛𝑠𝑒𝑒𝑛 1p 2p 3p 2i 3i pi ip 2u up
37.9 29.3 67.2 21.7 14.3 54.9 66.3 39.7 25.9 34.9 16.5

! 38.6 30.9 67.1 21.5 14.2 54.8 66.5 41.5 27.7 36.7 17.8
! 38.0 29.3 67.5 21.8 14.3 55.1 66.4 39.6 25.9 35.1 16.6

! 38.1 29.4 67.1 21.6 14.2 55.3 66.6 39.8 26.1 35.2 16.6
! ! 38.2 29.5 67.4 21.8 14.3 55.4 66.7 39.8 26.1 35.3 16.7

! ! 38.7 31.0 67.0 21.5 14.2 55.0 66.5 41.4 28.1 36.6 17.8
! ! 38.7 30.8 67.3 21.8 14.3 55.2 66.6 41.3 27.7 36.4 17.6
! ! ! 39.0 31.1 67.7 22.0 14.4 55.5 66.9 41.7 27.8 36.8 17.9

Table 6: MRR results (%) on noisy knowledge graph with 80% FB15k and 20% NELL995. Methods with +dl indicates using LoD
Loss. avg𝑝 indicates the the average MRR on EPFO. Decline indicates the MRR drop compared to without noise. Recovery
indicates the MRR recovery by LoD Loss. (i.e., 7.7-2.0 = 5.7)

Setting
Up Model

avg𝑝
Recovery

↑ avg𝑝
Decline

↓ avg𝑝 ↑ 1p 2p 3p 2i 3i pi ip 2u up

GQE - 7.7 20.3 33.8 13.0 10.1 29.7 39.9 19.8 16.3 11.0 9.3
GQE +dl 5.7 2.0 26.0 49.4 13.9 10.7 36.7 48.6 25.4 17.9 20.3 10.7
Query2Box - 12.1 25.9 45.7 15.8 12.2 37.5 49.8 23.4 18.2 18.7 11.6Setting 1

Query2Box +dl 9.8 2.3 35.7 64.6 20.4 13.6 51.4 64.5 37.2 23.6 30.7 14.9

GQE - 11.8 16.2 30.4 10.7 8.4 21.3 30.5 16.1 12.5 7.9 8.0
GQE +dl 6.7 5.1 22.9 51.2 14.4 10.5 36.4 18.3 25.8 18.1 20.5 10.8
Query2Box - 14.4 23.5 40.6 13.4 11.6 34.8 46.2 22.1 16.4 16.5 10.2Setting 2

Query2Box +dl 11.4 3.0 34.9 64.4 19.9 13.2 51.3 62.4 36.4 22.3 29.5 14.7

Table 7: MRR results (%) on noisy knowledge graph. Meth-
ods with +dl denotes those trained with LoD Loss. Here avg𝑝
denotes the the average MRR on EPFO.

Setting 1 Setting 2
𝜌 Model Rec. ↑Dec. ↓ avg𝑝 ↑Rec. ↑Dec. ↓ avg𝑝 ↑

GQE - 4.5 23.5 - 8.9 19.1
GQE +dl 2.9 1.6 26.4 5.0 3.9 24.1
Query2Box - 5.3 32.6 - 12.5 25.410

Query2Box +dl 4.1 1.2 36.7 9.9 2.6 35.3

GQE - 7.7 20.3 - 11.8 16.2
GQE +dl 5.6 2.0 26.0 6.7 5.1 22.9
Query2Box - 12.1 25.9 - 14.4 23.520

Query2Box +dl 9.8 2.3 35.7 11.4 3.0 34.9

GQE - 10.7 17.3 - 13.8 14.2
GQE +dl 6.9 3.8 24.2 7.1 6.7 21.3
Query2Box - 16.3 21.6 - 17.8 20.130

Query2Box +dl 12.9 3.4 34.5 13.2 4.6 33.3

GQE - 12.5 15.5 - 15.7 12.3
GQE +dl 4.9 7.6 20.4 8.3 7.4 20.6
Query2Box - 18.3 19.6 - 19.5 18.440

Query2Box +dl 10.3 8.0 29.9 13.4 6.1 31.8

GQE - 14.6 13.4 - 17.1 10.9
GQE +dl 2.8 11.8 16.2 9.3 7.8 20.2
Query2Box - 20.6 17.3 - 22.3 15.650

Query2Box +dl 7.3 13.3 24.6 13.8 8.5 29.4

divide the noisy knowledge graph into (1) training with noise, and
(2) testing with noise. Therefore, we design two settings:

• Setting 1: Distinguishing and blocking noisy data during
testing, blocking delayed 50,000 steps during training. In
this setting, noisy data both in train and test set.

• Setting 2: Distinguishing and blocking noisy data during
testing but no sieves are used during training. In this setting,
noisy data only in test set.

Since GQE and Query2Box can not handle the negation operation,
we only calculate results over EPFO. As shown in Tabel 6, +dl
achieves a gain of 5.7% avg𝑝 MRR in setting 1. +dl achieves a gain
of 6.7% avg𝑝 MRR in setting 2. These results demonstrate that LoD
Loss guides models for robust representation and resists the data of
non-rigorous logic over noisy knowledgraph during both training
and testing.
Noise Ratio. Since we take mixed up data of FB15k and NELL995
as noisy knowledge graph, experimentation with different noisy
data percentages is also necessary. The results with (100 − 𝜌)%
of FB15k and 𝜌% of NELL995 are shown in Tables 7, where the
similarity threshold of GQE is 𝜍 = 0.15 and Query2Box is 𝜍 = −5.0.
For setting 1, the proposed LoD Loss with Query2Box achieves avg𝑝
MRR Recovery of 4.1%, 9.8%, 12.9%, 10.3% and 7.3% when 10%,
20%, 30%, 40% and 50% of noisy data are used. For settting 2, it
gains 9.9%, 11.4%, 13.2%, 13.4% and 13.8%. Similar results can be
observed in other base methods. We can draw three conclusions
from these results: (1) LoD Loss is stable and effective at various
non-rigorous logic ratios; (2) From setting 1, with the use of LoD
Loss, we don’t have to clean up the training set to train a usable
model; (3) From setting 2, the inference process of our model is

Logic Diffusion for Knowledge Graph Reasoning

better resist data of non-rigorous logic, which is great valuable for
practical application.

6 CONCLUSION
In this paper, we disassemble the open-set knowledge graph into
two major problems: unseen FOL and noise-rich data. To address
these issues, we propose a universal module called LoD which
achieves representation enhancement and logic augmentation. LoD
discovers unseen queries from surroundings and achieves dynami-
cal equilibrium between different FOL patterns. Besides, we propose
a loss function named LoD Loss to handle noise-rich data. Extensive
experiments on four public datasets demonstrate the superiority
of mainstream models with the proposed LoD module with main-
stream knowledge graph reasoning models over state-of-the-art.
Experiments on open-set knowledge graph demonstrate the supe-
riority of LoD Loss. Overall, we have done a pioneering work and
provided a holistic solution that can be specifically used to solve
common sense reasoning on open-set knowledge graph. In future
work, we will extend our approach to noisy multi-modal knowledge
graph which is a more realistic scene.

REFERENCES
[1] Erik Arakelyan, Daniel Daza, Pasquale Minervini, and Michael Cochez. 2020.

Complex query answering with neural link predictors. arXiv preprint
arXiv:2011.03459 (2020).

[2] Jiaxin Bai, Zihao Wang, Hongming Zhang, and Yangqiu Song. 2022.
Query2Particles: Knowledge Graph Reasoning with Particle Embeddings. arXiv
preprint arXiv:2204.12847 (2022).

[3] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and
Oksana Yakhnenko. 2013. Translating Embeddings for Modeling Multi-
relational Data. In Advances in Neural Information Processing Systems, C.J.
Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger (Eds.),
Vol. 26. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2013/
file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf

[4] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners. In
Adv. Neural Inform. Process. Syst.

[5] Zongsheng Cao, Qianqian Xu, Zhiyong Yang, Xiaochun Cao, and Qingming
Huang. 2021. Dual quaternion knowledge graph embeddings. In Proceedings of
the AAAI Conference on Artificial Intelligence, Vol. 35. 6894–6902.

[6] Ines Chami, Adva Wolf, Da-Cheng Juan, Frederic Sala, Sujith Ravi, and Christo-
pher Ré. 2020. Low-dimensional hyperbolic knowledge graph embeddings. arXiv
preprint arXiv:2005.00545 (2020).

[7] Ling Chen, Jun Cui, Xing Tang, Yuntao Qian, Yansheng Li, and Yongjun Zhang.
2022. RLPath: a knowledge graph link prediction method using reinforcement
learning based attentive relation path searching and representation learning.
Applied Intelligence 52, 4 (2022), 4715–4726.

[8] Wenhu Chen, Wenhan Xiong, Xifeng Yan, and William Yang Wang. 2018. Varia-
tional Knowledge Graph Reasoning. In NAACL.

[9] Xiaojun Chen, Ling Ding, and Yang Xiang. 2021. Neighborhood aggregation
based graph attention networks for open-world knowledge graph reasoning.
Journal of Intelligent & Fuzzy Systems (2021), 1–12.

[10] Xuelu Chen, Ziniu Hu, and Yizhou Sun. 2022. Fuzzy Logic Based Logical Query
Answering on Knowledge Graphs. In Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 36. 3939–3948.

[11] Xiaojun Chen, Shengbin Jia, and Yang Xiang. 2020. A review: Knowledge rea-
soning over knowledge graph. Expert Systems with Applications 141 (2020),
112948.

[12] Nurendra Choudhary, Nikhil Rao, Sumeet Katariya, Karthik Subbian, and Chan-
dan Reddy. 2021. Probabilistic entity representation model for reasoning over
knowledge graphs. Advances in Neural Information Processing Systems 34 (2021),
23440–23451.

[13] Tal Friedman and Guy Broeck. 2020. Symbolic querying of vector spaces: Proba-
bilistic databases meets relational embeddings. In Conference on Uncertainty in

Artificial Intelligence. PMLR, 1268–1277.
[14] Dinesh Garg, Shajith Ikbal, Santosh K Srivastava, Harit Vishwakarma, Hima

Karanam, and L Venkata Subramaniam. 2019. Quantum embedding of knowledge
for reasoning. Advances in Neural Information Processing Systems 32 (2019).

[15] Kelvin Guu, John Miller, and Percy Liang. 2015. Traversing knowledge graphs in
vector space. arXiv preprint arXiv:1506.01094 (2015).

[16] Takuo Hamaguchi, Hidekazu Oiwa, Masashi Shimbo, and Yuji Matsumoto. 2017.
Knowledge transfer for out-of-knowledge-base entities: A graph neural network
approach. arXiv preprint arXiv:1706.05674 (2017).

[17] Will Hamilton, Payal Bajaj, Marinka Zitnik, Dan Jurafsky, and Jure Leskovec.
2018. Embedding logical queries on knowledge graphs. Advances in neural
information processing systems 31 (2018).

[18] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. Advances in neural information processing systems 30
(2017).

[19] Jiale Han, Bo Cheng, and Xu Wang. 2020. Open domain question answering
based on text enhanced knowledge graph with hyperedge infusion. In Findings
of the Association for Computational Linguistics: EMNLP 2020. 1475–1481.

[20] Olaf Hartig and Ralf Heese. 2007. The SPARQL query graph model for query
optimization. In European Semantic Web Conference. Springer, 564–578.

[21] Zijian Huang, Meng-Fen Chiang, and Wang-Chien Lee. 2022. LinE: Logical
Query Reasoning over Hierarchical Knowledge Graphs. In Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining. 615–625.

[22] Pavan Kapanipathi, Ibrahim Abdelaziz, Srinivas Ravishankar, Salim Roukos,
Alexander Gray, Ramon Astudillo, Maria Chang, Cristina Cornelio, Saswati
Dana, Achille Fokoue, et al. 2020. Leveraging abstract meaning representation
for knowledge base question answering. arXiv preprint arXiv:2012.01707 (2020).

[23] Edward Elson Kosasih, Fabrizio Margaroli, Simone Gelli, Ajmal Aziz, Nick Wild-
goose, and Alexandra Brintrup. 2022. Towards knowledge graph reasoning
for supply chain risk management using graph neural networks. International
Journal of Production Research (2022), 1–17.

[24] Denis Krompaß, Maximilian Nickel, and Volker Tresp. 2014. Querying factorized
probabilistic triple databases. In International Semantic Web Conference. Springer,
114–129.

[25] Ni Lao, Tom Mitchell, and William Cohen. 2011. Random walk inference and
learning in a large scale knowledge base. In Proceedings of the 2011 conference on
empirical methods in natural language processing. 529–539.

[26] Shuangyin Li, Heng Wang, Rong Pan, and Mingzhi Mao. 2021. MemoryPath: A
deep reinforcement learning framework for incorporating memory component
into knowledge graph reasoning. Neurocomputing 419 (2021), 273–286.

[27] Lihui Liu, Boxin Du, Heng Ji, ChengXiang Zhai, and Hanghang Tong. 2021.
Neural-Answering Logical Queries on Knowledge Graphs. In Proceedings of the
27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. 1087–
1097.

[28] Mojtaba Nayyeri, Gokce Muge Cil, Sahar Vahdati, Francesco Osborne, Mah-
fuzur Rahman, Simone Angioni, Angelo Salatino, Diego Reforgiato Recupero,
Nadezhda Vassilyeva, Enrico Motta, et al. 2021. Trans4E: Link prediction on
scholarly knowledge graphs. Neurocomputing 461 (2021), 530–542.

[29] Brandon Reagen, Paul Whatmough, Robert Adolf, Saketh Rama, Hyunkwang Lee,
Sae Kyu Lee, José Miguel Hernández-Lobato, Gu-Yeon Wei, and David Brooks.
2016. Minerva: Enabling low-power, highly-accurate deep neural network accel-
erators. In 2016 ACM/IEEE 43rd Annual International Symposium on Computer
Architecture (ISCA). IEEE, 267–278.

[30] Hongyu Ren, Hanjun Dai, Bo Dai, Xinyun Chen, Michihiro Yasunaga, Haitian
Sun, Dale Schuurmans, Jure Leskovec, and Denny Zhou. 2021. Lego: Latent
execution-guided reasoning for multi-hop question answering on knowledge
graphs. In International Conference on Machine Learning. PMLR, 8959–8970.

[31] Hongyu Ren, Weihua Hu, and Jure Leskovec. 2020. Query2box: Reasoning
over knowledge graphs in vector space using box embeddings. arXiv preprint
arXiv:2002.05969 (2020).

[32] Hongyu Ren and Jure Leskovec. 2020. Beta embeddings for multi-hop logical
reasoning in knowledge graphs. Advances in Neural Information Processing
Systems 33 (2020), 19716–19726.

[33] Andrea Rossi, Denilson Barbosa, Donatella Firmani, Antonio Matinata, and Paolo
Merialdo. 2021. Knowledge graph embedding for link prediction: A comparative
analysis. ACM Transactions on Knowledge Discovery from Data (TKDD) 15, 2
(2021), 1–49.

[34] Ali Sadeghian, Mohammadreza Armandpour, Anthony Colas, and Daisy Zhe
Wang. 2021. ChronoR: rotation based temporal knowledge graph embedding. In
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35. 6471–6479.

[35] Magnus Sahlgren. 2008. The distributional hypothesis. Italian Journal of Disabil-
ity Studies 20 (2008), 33–53.

[36] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne van den Berg, Ivan
Titov, and Max Welling. 2018. Modeling relational data with graph convolutional
networks. In European semantic web conference. Springer, 593–607.

[37] Yingchun Shan, Chenyang Bu, Xiaojian Liu, Shengwei Ji, and Lei Li. 2018.
Confidence-aware negative sampling method for noisy knowledge graph em-
bedding. In 2018 IEEE International Conference on Big Knowledge (ICBK). IEEE,

https://proceedings.neurips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf

Xiaoying Xie, Biao Gong, Yiliang Lv, Zhen Han, Guoshuai Zhao, and Xueming Qian

33–40.
[38] Chao Shang, Yun Tang, Jing Huang, Jinbo Bi, Xiaodong He, and Bowen Zhou.

2019. End-to-end structure-aware convolutional networks for knowledge base
completion. In Proceedings of the AAAI Conference on Artificial Intelligence. 3060–
3067.

[39] Chao Shang, Yun Tang, Jing Huang, Jinbo Bi, Xiaodong He, and Bowen Zhou.
2019. End-to-end structure-aware convolutional networks for knowledge base
completion. In Proceedings of the AAAI Conference on Artificial Intelligence. 3060–
3067.

[40] Tianyang Shao, Xinyi Li, Xiang Zhao, Hao Xu, and Weidong Xiao. 2021. DSKRL:
A dissimilarity-support-aware knowledge representation learning framework
on noisy knowledge graph. Neurocomputing 461 (2021), 608–617.

[41] Baoxu Shi and Tim Weninger. 2018. Open-world knowledge graph completion.
In Proceedings of the AAAI conference on artificial intelligence, Vol. 32.

[42] Haitian Sun, Andrew Arnold, Tania Bedrax Weiss, Fernando Pereira, and
William W Cohen. 2020. Faithful embeddings for knowledge base queries. Ad-
vances in Neural Information Processing Systems 33 (2020), 22505–22516.

[43] Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. 2019. Rotate: Knowl-
edge graph embedding by relational rotation in complex space. arXiv preprint
arXiv:1902.10197 (2019).

[44] Zequn Sun, Chengming Wang, Wei Hu, Muhao Chen, Jian Dai, Wei Zhang, and
Yuzhong Qu. 2020. Knowledge graph alignment network with gated multi-hop
neighborhood aggregation. In Proceedings of the AAAI Conference on Artificial
Intelligence. 222–229.

[45] Zhenwei Tang, Shichao Pei, Xi Peng, Fuzhen Zhuang, Xiangliang Zhang, and
Robert Hoehndorf. 2022. Joint Abductive and Inductive Neural Logical Reasoning.
arXiv preprint arXiv:2205.14591 (2022).

[46] Prayag Tiwari, Hongyin Zhu, and Hari Mohan Pandey. 2021. DAPath: Distance-
aware knowledge graph reasoning based on deep reinforcement learning. Neural
Networks 135 (2021), 1–12.

[47] Kristina Toutanova and Danqi Chen. 2015. Observed versus latent features
for knowledge base and text inference. In Proceedings of the 3rd workshop on
continuous vector space models and their compositionality. 57–66.

[48] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume
Bouchard. 2016. Complex embeddings for simple link prediction. In International
conference on machine learning. PMLR, 2071–2080.

[49] Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, Nilesh Agrawal, and Partha
Talukdar. 2020. Interacte: Improving convolution-based knowledge graph em-
beddings by increasing feature interactions. In Proceedings of the AAAI conference
on artificial intelligence, Vol. 34. 3009–3016.

[50] Luke Vilnis, Xiang Li, Shikhar Murty, and Andrew McCallum. 2018. Probabilistic
embedding of knowledge graphs with box lattice measures. arXiv preprint
arXiv:1805.06627 (2018).

[51] Guojia Wan, Bo Du, Shirui Pan, and Jia Wu. 2020. Adaptive knowledge subgraph
ensemble for robust and trustworthy knowledge graph completion. World Wide
Web 23, 1 (2020), 471–490.

[52] Guojia Wan, Shirui Pan, Chen Gong, Chuan Zhou, and Gholamreza Haffari.
2021. Reasoning like human: Hierarchical reinforcement learning for knowledge
graph reasoning. In Proceedings of the Twenty-Ninth International Conference on
International Joint Conferences on Artificial Intelligence. 1926–1932.

[53] Qi Wang, Yongsheng Hao, and Jie Cao. 2020. ADRL: An attention-based deep
reinforcement learning framework for knowledge graph reasoning. Knowledge-
Based Systems 197 (2020), 105910.

[54] Wenhan Xiong, Thien Hoang, and William Yang Wang. 2017. Deeppath: A
reinforcement learning method for knowledge graph reasoning. arXiv preprint
arXiv:1707.06690 (2017).

[55] Zi Ye, Yogan Jaya Kumar, Goh Ong Sing, Fengyan Song, and Junsong Wang. 2022.
A Comprehensive Survey of Graph Neural Networks for Knowledge Graphs.
IEEE Access 10 (2022), 75729–75741.

[56] Donghan Yu, Chenguang Zhu, Yuwei Fang, Wenhao Yu, Shuohang Wang, Yi-
chong Xu, Xiang Ren, Yiming Yang, and Michael Zeng. 2021. Kg-fid: Infusing
knowledge graph in fusion-in-decoder for open-domain question answering.
arXiv preprint arXiv:2110.04330 (2021).

[57] Shuai Zhang, Yi Tay, Lina Yao, and Qi Liu. 2019. Quaternion knowledge graph
embeddings. Advances in neural information processing systems 32 (2019).

[58] Wen Zhang, Jiaoyan Chen, Juan Li, Zezhong Xu, Jeff Z Pan, and Huajun Chen.
2022. Knowledge Graph Reasoning with Logics and Embeddings: Survey and
Perspective. arXiv preprint arXiv:2202.07412 (2022).

[59] Yao Zhang, Peiyao Li, Hongru Liang, Adam Jatowt, and Zhenglu Yang. 2021.
Fact-Tree Reasoning for N-ary Question Answering over Knowledge Graphs.
arXiv preprint arXiv:2108.08297 (2021).

[60] Yongqi Zhang and Quanming Yao. 2022. Knowledge graph reasoning with
relational digraph. In Proceedings of the ACM Web Conference 2022. 912–924.

[61] Zhanqiu Zhang, Jie Wang, Jiajun Chen, Shuiwang Ji, and Feng Wu. 2021. Cone:
Cone embeddings for multi-hop reasoning over knowledge graphs. Advances in
Neural Information Processing Systems 34 (2021), 19172–19183.

[62] Zhehui Zhou, Can Wang, Yan Feng, and Defang Chen. 2022. JointE: Jointly
utilizing 1D and 2D convolution for knowledge graph embedding. Knowledge-
Based Systems 240 (2022), 108100.

[63] Lei Zou, Jinghui Mo, Lei Chen, M Tamer Özsu, and Dongyan Zhao. 2011. gStore:
answering SPARQL queries via subgraph matching. Proceedings of the VLDB
Endowment 4, 8 (2011), 482–493.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Modeling Multi-hop Relations
	2.2 Modeling Numerous Answers

	3 Preliminaries
	3.1 Logic Format
	3.2 Knowledge Graph Embedding
	3.3 Knowledge Graph Reasoning

	4 Logic Diffusion
	4.1 LoD Architecture
	4.2 LoD Loss

	5 Experiments
	5.1 Evaluation Setup
	5.2 Performance
	5.3 Ablation Study with Noisy Data

	6 Conclusion
	References

